Our universe, seemingly stable after 13.7 billion years of existence, is under threat. The culprit behind this looming danger is none other than the Higgs boson, a fundamental particle that holds the key to mass and interactions in the cosmos. The mass of particles is intricately connected to their interactions with the Higgs field, a
Science
The quest to understand the imbalance between matter and antimatter in the universe has been a long-standing mystery in the field of particle physics. The recent breakthrough by the BASE international research collaboration at CERN has opened up new possibilities for measuring the mass and magnetic moment of antiprotons with unprecedented accuracy. According to the
In a groundbreaking move, researchers from the Okinawa Institute for Science and Technology (OIST), the University of Tohoku, and the University of Tokyo have proposed a method for simulating gravitational waves on the laboratory bench through the quantum condensate of cold atoms. This innovative approach challenges the traditional methods of detecting gravitational waves through massive
A recent study led by physicists at the University of Bath has uncovered a groundbreaking optical phenomenon with vast implications across various fields such as pharmaceutical science, security, forensics, environmental science, art conservation, and medicine. Published in the prestigious journal Nature Photonics, the research introduces a new concept known as hyper-Raman optical activity. This phenomenon
The Atlantic Meridional Ocean Current (AMOC) plays a crucial role in maintaining the relatively warm climate of Northern Europe. However, recent studies have shown that this important ocean current is under threat due to the effects of global warming. Scientists have long projected that the AMOC could cease to function by the year 2200, but
Delving deep beneath the France-Switzerland border, scientists at the Large Hadron Collider are embarking on a remarkable journey to unravel the secrets of the universe. The collision of protons at nearly the speed of light within this massive device is recreating the conditions that prevailed right after the Big Bang, providing valuable insights into the
Light has always played a crucial role in human existence, from the discovery of fire to the development of various artificial light sources over the years. Our ability to study, work, and even our physical and mental health are influenced by the distribution and intensity of artificial lights indoors. As such, modern artificial light sources
A recent collaboration between Germany’s Forschungszentrum Jülich and Korea’s IBS Center for Quantum Nanoscience (QNS) has led to the development of a groundbreaking quantum sensor capable of detecting minute magnetic fields at the atomic-length scale. This innovative technology represents a significant advancement in the field of quantum sensing, offering scientists a tool akin to an
The concept of two-dimensional materials continues to push the boundaries of what we know about material science. When a material is reduced to just one or two layers of molecules, it undergoes a remarkable transformation, showcasing properties that are vastly different from its bulk counterpart. This phenomenon has captivated the interest of a research team
Researchers at Lawrence Livermore National Laboratory (LLNL) recently made significant progress in understanding and resolving the long-standing “drive-deficit” issue in indirect-drive inertial confinement fusion (ICF) experiments. This breakthrough has the potential to lead to more precise predictions and enhanced performance in fusion energy experiments conducted at the National Ignition Facility (NIF). Led by physicist Hui