Science

The recent breakthrough in quantum technology has opened new possibilities for the field. Researchers have made significant progress in utilizing the frequency dimension within integrated photonics to enhance quantum computing capabilities. By developing silicon ring resonators with a small footprint and the ability to generate over 70 distinct frequency channels, the researchers have paved the
0 Comments
Neural networks have become increasingly complex and energy-intensive, leading to sustainability concerns. Researchers at the Max Planck Institute for the Science of Light have proposed a new method using optics to address these challenges. The exponential growth of neural network size has led to high energy consumption and longer training times. For example, training GPT-3
0 Comments
In a recent study conducted by researchers from the HEFTY Topical Collaboration, the recombination of charm and bottom quarks into Bc mesons in the quark-gluon plasma (QGP) was investigated. The team developed a transport model to simulate the kinetics of heavy-quark bound states within the expanding QGP fireball that forms during high-energy heavy-ion collisions. The
0 Comments
Aalto University scientists in Finland have discovered a groundbreaking method to manipulate the alignment of bacteria using magnets. This revolutionary approach not only allows for the organization of bacteria but also opens up a myriad of possibilities for research in various fields, including complex materials, phase transitions, and condensed matter physics. Unlike magnetotactic bacteria, the
0 Comments
In the world of material science, researchers have been continuously exploring innovative methods to manipulate magnetization on ultrafast time scales. One such breakthrough method has recently been discovered by scientists from the Max Born Institute (MBI) and their international collaborators. This revolutionary approach involves the use of circularly polarized pulses of extreme ultraviolet (XUV) radiation
0 Comments