Quantum computing is at the forefront of technological innovation, promising unprecedented computing power and breakthroughs in various fields. However, the realization of fault-tolerant quantum computers has proven to be a complex challenge due to the inherent fragility of quantum systems. Traditional approaches to error correction involve encoding a single logical qubit onto multiple physical qubits,
Science
Graphene, a single layer of carbon atoms in a hexagonal lattice, has gained recognition for its unique electronic properties that allow for the development of electronic devices beyond traditional silicon-based technology. Fusing two or more layers of graphene together creates a phenomenon known as the moiré pattern, leading to significant changes in properties such as
Quantum entanglement is a fascinating phenomenon that has been at the forefront of research in the field of quantum technology. Researchers at the Institute for Molecular Science have recently made a groundbreaking discovery regarding the entanglement between electronic and motional states in their ultrafast quantum simulator. This discovery sheds light on the potential of quantum
Researchers from various institutions have collaborated to study the spontaneous formation and synchronization of multiple quantum vortices in optically excited semiconductor microcavities. This groundbreaking research has opened up new possibilities for the exploration and simulation of condensed matter systems using polariton quantum vortices. The team of researchers managed to create a triangular lattice consisting of
The ability to manipulate light particles on a quantum level has always been a fascinating concept for scientists. Recently, researchers at the University of Bonn have made a significant breakthrough by creating a type of “super photon” through the use of nano molds. This new approach allows them to shape light particles into a lattice
Recent research conducted by the National University of Singapore (NUS) has paved the way for a deeper understanding of advanced quantum materials through the simulation of higher-order topological (HOT) lattices. These complex lattice structures possess robust quantum states that have vast implications for various technological applications. The study of topological states of matter, particularly their
In a groundbreaking discovery, a collaborative research team has successfully identified the world’s first multiple Majorana zero modes (MZMs) in a single vortex of the superconducting topological crystalline insulator SnTe. The team, led by Prof. Junwei Liu from the Hong Kong University of Science and Technology (HKUST), along with Prof. Jinfeng Jia and Prof. Yaoyi
Equation of state measurements in high-pressure environments have always been a challenge for scientists in the field of condensed-matter sciences. Recently, an international team of scientists from Lawrence Livermore National Laboratory (LLNL), Argonne National Laboratory, and Deutsches Elektronen-Synchrotron have developed a new sample configuration that improves the reliability of these measurements in a pressure regime
Topological materials are gaining attention in the scientific community due to their unique properties that stem from the knotted or twisted nature of their wavefunction. When topological materials interact with their surrounding space, the wavefunction must unwind, leading to the formation of edge states. These edge states cause the electrons at the edge of the
Recent research conducted by the University of Trento in collaboration with the University of Chicago has introduced a groundbreaking approach to understanding the intricate interactions between electrons and light. This study not only sheds light on the fundamental aspects of quantum mechanics but also holds immense potential for the development of quantum technologies and the